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We obtain solutions of coupled nonlinear Schrödinger equations which describe multisoliton complexes
moving on a cnoidal-wave background. Our method is based on the Darboux transformation, which uses Sym’s
solution of the associated linear equation. Solutions are presented in a matrix determinant form, matrix ele-
ments of which are expressed in terms of Jacobi’s elliptic functions. Some characteristics of multisoliton
complexes like widths and amplitudes are explicitly calculated.
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I. INTRODUCTION

Recently there has arisen much interest in multisoliton
complexessMSC’sd f1,2g, which appear in various physical
problems. These include solitons in multicore fiber devices
f3g, multicomponent Bose-Einstein condensates in a trapped
ultracold gasf4g, gap solitonsf5g, and incoherent solitons in
photorefractive materialsf2,6g. An MSC is a self-localized
state, which is a nonlinear superposition of several single
solitons of the system having the same speed and thus moves
as a single complex. Generally, MSC’s are described by
coupled nonlinear Schrödinger equationssNLSE’sd. A num-
ber of publications dealt with the explicit construction of
MSC’s of coupled NLSE’s. They include soliton solutions
f7,8g and periodic solutionsf9–11g of the two-component
case and solutions of equations having components larger
than 2f9,12,2g.

In some special cases, like the wave propagations in a
homogeneous medium having a Kerr-type nonlinear re-
sponse, the corresponding NLSE’s reduce to the integrable
equation

]xck = i]z
2ck + 2iso

i=0

N

uciu2ck, k = 0, N ands = ± 1.

s1d

The integrability allows us to use the inverse scattering
method to construct solitonsf13g. But the high-level math-
ematical technicality of the method makes it difficult for
finding more complex solutions, multisolitons and/or solitons
having nonvanishing backgrounds. Thus, most solutions of
MSC’s have been constructed in a form of stationary solu-
tions or using the linear superposition principlef14g. The
stationary MSC reduces the problem of the coupled NLSE’s
to a set of ordinary differential equations. Some important
results obtained in these ways are solitary-wave solutions
f15g, MSC solutions of partially coherent solitons inf16g,
MSC’s on a backgroundf17,18g, and MSC’s in a sea of
radiation modesf19g. Collisions of MSC’s are also investi-
gated and illustrated by numerical examplesf20g.

Especially, the MSC solutions on a backgroundf17,18g
provide answers on how MSC’s interact with plane waves
and/or the change of characteristics of MSC’s by an addition
of plane waves. These solutions can be useful, for example,
in the theory of dark incoherent solitons. At this point, we
note that the plane-wave solution of the NLSE’s is a special
limit of more general solutions having nonzero asymptote,
the so-calledcnoidal-wavesolutions of integrable theories.
Then, it would be very interesting to know the characteristics
of MSC’s lying on a cnoidal wave of pulsating amplitude,
instead of a plane wave of constant amplitude. A related
experiment is the appearance of a cnoidal-wave train in the
Maxwell-Bloch equationf21g. More close experimental de-
velopment is the formation of solitons in nonlinear periodic
structures, known as gap solitonsf22g.

In fact, there have been various special periodic solutions
of multicomponent NLSE’ssa cnoidal wave is a specific
cased, which were obtained by various direct methods using
the appropriate ansatzf9,23g. For example, the Hirota bilin-
ear method was used to find periodic solutions of coupled
NLSE’s f24,25g. In Ref. f2g, Porubov and Parker employ the
following ansatz:

c0 = ÎF`2 + A` + Beiusz,xd, c1 = ÎG`2 + D` + Eeifsz,xd,

s2d

where`=`sx−cz,g2,g3d is the Weierstrass function. But all
components of these solutionssboth uc0u , uc1ud are periodic
over the entirex axis and are not forms of the MSC’ssa
soliton for c1 in this cased plus a periodic wavesc0d. These
types of solutions are not suitable to the study of the effects
of periodic waves applied to an MSC.

In this paper, we will calculate MSC solutions on a
cnoidal-wave background using a method based on the Dar-
boux transformationsDTd, instead of using some special an-
satz. The DT gives a way to obtain a new solution of “a
soliton+starting solution” type when it is applied once on a
given starting solutionf26–28g. In fact, this method is ap-
plied to the vector NLSEscorresponding to theN=1 case of
the present paperd to study a soliton coupled to a cnoidal-
wave backgroundf29,30g. To create an MSC on a starting
solution cs0d of the cnoidal wavefwe are restricted by the
fact that a starting solution has ac0 component only in Eq.
s1dg, we apply anN iteration of the DT oncs0d. This proce-*Electronic address: hjshin@khu.ac.kr
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dure is described inf31g, which shows that the final result of
“MSC+starting solution” can be given in a closed determi-
nant form.

Section II explains the DT method for constructing the
MSC on a background, expressed in a closed determinant
form. Section III showsN=1,2,3MSC’s on a dn-type cnoi-
dal wave in a focusing mediumss=1d. Some characteristics
of MSC’s like the width and amplitude variation along with
the modulus parameterk of dn wave backgrounds are dis-
cussed. The shift of crests of the dn wave is also calculated.
MSC’s lying on the plane wavescorresponding to thek=0
limit d and a solitonsk=1 limitd of the dn cnoidal wave are
described. Section IV discusses MSC’s of cn background in a
focusing mediumss=1d. It shows that there are two possible
type of MSC’s on a cn-type background. Section V discusses
MSC’s of sn background in a defocusing mediumss=−1d.
Section VI contains discussions. The derivation of Sym’s
solution is shown in Appendix A and the calculation of the
shifts of crests is given in Appendix B. All the results and
figures of the paper are checked and prepared using the sym-
bolic packageMATHEMATICA .

II. MULTISOLITON COMPLEXES IN A MATRIX
DETERMINANT FORM

Recently, a simple but powerful MSC finding method was
developed inf31g. The method, which is based on the Dar-
boux transformation, uses Crum’s formula and avoids the
stationary ansatzf26–28g. More explicit closed expressions
of the MSC’s having complex behavior were found using
this method. This method is suited well to the construction of
N-vector MSC’s on an arbitrary nonvanishing background,
especially on the cnoidal-wave background. Here, we briefly
explain the method of finding MSC solutions using the Dar-
boux transformation. A more detailed exposition can be
found inf31g. We first write down the associated linear equa-
tion sLax paird of the coupled NLSEs1d in a form needed in
the present paper:

]za − scb + ba/2 = 0, ]zb + c*a − bb/2 = 0,

]xa − isucu2a − iss]zcdb + isbcb − ib2a/2 = 0,

]xb + isucu2b − is]zc
*da − ibc*a + ib2b/2 = 0,

]zc − bc/2 = 0, ]xc + ib2c/2 = 0, s3d

whereb is an arbitrary parameter anda,b,c are solutions of
the linear equations corresponding to the parameterb. The
signatures is either 1 or −1 depending on whether the group
velocity dispersion is abnormalss=1d or normalss=−1d or
the waveguide is self-focusingss=1d or self-defocusingss
=−1d. Then the DT procedure to obtain MSC solutions is
given in the following steps.

First, choose a particular solution forc=cs0d, which de-
scribe a cnoidal-wave background. The cnoidal-wave back-
groundcs0d will be given in terms of Jacobi’s elliptic func-
tions like dn, sn, and cn.

Next, we integrate the linear equations3d for the given
backgroundcs0d to obtain N solutions a=aj, b=bj, and c

=cj for N values ofb=b j, j =1,N. Here we takeb j =real j
=1,N to get stationary MSC’s.

Finally, the Darboux transformation gives a MSC solution
in terms ofaj ,bj ,cj , j =1,N by the following matrix determi-
nant form. See more details inf31g. We first define two quan-
tities D and Q from which the MC solutions can be con-
structed. LetD for N=1,2,3 bedefined as

DsN=1d = LP1,

DsN=2d = LU− b1M1 − b2P2

P1 M2
U + sRIa1 a2

k1 k2
I2

,

DsN=3d = L*s− b1d2P1 s− b2d2M2 s− b3d2P3

− b1M1 − b2P2 − b3M3

P1 M2 P3
*

+ sRsb1
2 − b3

2dsb2
2 − b3

2dIa1 a2

k1 k2
I2P3

b3
+ sRsb2

2 − b1
2d

3sb3
2 − b1

2dIa2 a3

k2 k3
I2P1

b1
+ sRsb1

2 − b2
2dsb3

2 − b2
2d

3Ia1 a3

k1 k3
I2M2

b2
, s4d

where

L = iN
2sN−1d/2 p

i=1,N
ai

* p
j=1,N, j.i

sb j − bidN+1sb j + bid3,

R= − 4L
p bi

p j,i
sb j − bid

, s5d

and Pi = uaiu2+sukiu2+suziu2, Mi = uaiu2+sukiu2−suziu2, ai
=ai / l i, ki =bi / l i, zi =ci /mi,

l i =Î p
j=1,N jÞi

sbi + b jd, mi =Î p
j=1,N jÞi

ubi − b ju. s6d

Here i¯ i2 means the squared absolute of a determinant.
Another quantityQ is defined by the form

Q0
sN=1d = 2isLb1a1b1

* , uQ1
sN=1du = 2isLb1a1c1

* ,

Q0
sN=2d = − 2isLUb1a1b1

* b2a2b2
*

P1 M2
U ,

Qi
sN=2d = − 2isLUdi,1b1a1c1

* di,2b2a2c2
*

P1 M2
U + iRliUa1 a2

k1 k2
U

3Udi,1c1
* di,2c2

*

k1
* k2

* U, i = 1,2,
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Q0
sN=3d = 2isL* b1a1b1

* b2a2b2
* b3a3b3

*

− b1M1 − b2P2 − b3M3

P1 M2 P3
*

+ 2iR*b1
2a1 b2

2a2 b3
2a3

a1 a2 a3

k1 k2 k3
**b1

2k1
* b2

2k2
* b3

2k3
*

a1
* a2

* a3
*

k1
* k2

* k3
* * ,

Qi
sN=3d = 2isL*di,1b1a1c1

* di,2b2a2c2
* di,3b3a3c3

*

− b1M1 − b2P2 − b3M3

P1 M2 P3
*

+ iRli
sb1

2 − b3
2dsb2

2 − b3
2d

sbi + b3db3
Ua1 a2

k1 k2
U

3Udi,1c1
* di,2c2

*

k1
* k2

* UP3

+ iRli
sb2

2 − b1
2dsb3

2 − b1
2d

sbi + b1db1
Ua2 a3

k2 k3
U

3Udi,2c2
* di,3c3

*

k2
* k3

* UP1

+ iRli
sb1

2 − b2
2dsb3

2 − b2
2d

sbi + b2db2
Ua1 a3

k1 k3
U

3Udi,1c1
* di,3c3

*

k1
* k3

* UM2 + 2iRli*b1
2a1 b2

2a2 b3
2a3

a1 a2 a3

k1 k2 k3
*

3*di,1c1
* di,2c2

* di,3c3
*

a1
* a2

* a3
*

k1
* k2

* k3
* *, i = 1,2,3. s7d

Using these quantities, we can obtain MSC solutions using

c0 = cs0d + is
Q0

D
, ci = is

Qi

D
, i = 1,N. s8d

III. MULTISOLITON COMPLEXES ON A dn-TYPE
BACKGROUND

Soliton complexes on a dn-type background can be ob-
tained by choosing a starting solution

cs0d = exphip2s2 − k2dxjp dnspz,kd, s9d

where dn=dnspz,kd, cn, and sn are the standard Jacobi ellip-
tic functions with the modulusk and p is an arbitrary con-
stant. In the following, we employ the terminology and no-
tation of Ref.f32g as far as elliptic functions are involved.
This is the well-known cnoidal solution of the nonlinear
Schrödinger equation in a focusing mediumss=1d. The lin-
ear equations3d is with a dn-type backgroundc=cs0d in Eq.
s9d was first integrated by Sym in a different contextsde-
scription of vortex motion in hydrodynamicsd f33g. It was
then applied to an NLSE-related problem in Refs.f34,29,30g.

The detailed proof of Sym’s solution is given in Appendix A.
Explicitly, it is

a = exphip2s2 − k2dx/2jexpsigx + dpzd
Qspz− ud

Qspzd
,

b = − exph− ip2s2 − k2dxj
snsuddnspz− ud

cnsud
a,

c = r expsbz/2 − ib2x/2d, s10d

whereu,r are arbitrary constants. The Bäcklund parameterb
is related to the real parameteru as

b = − p
dnsud

snsudcnsud
, s11d

andg ,d in Eq. s10d are related tou as

g = −
p2

2
Sdn2sud

cn2sud
−

1

sn2sudD ,

d =
Q8sud
Qsud

+
1

2

dnsud
snsudcnsud

−
snsuddnsud

cnsud
, s12d

where the Jacobi theta function is defined by the complete
elliptic integral of the firstssecondd kind K sEd as

Qsud = u4Spu

2K
D = 1 + 2o s− 1dnqn2

cosSnpu

K
D , s13d

with q=exps−pK8 /Kd andK8;Ksk8=Î1−k2d.
Figure 1 shows the simplestN=1 case of an MSC on a

dn-type background atx=0, which was drawn using

c0 = expfip2s2 − k2dxgp dnspz,kd + iQ0
sN=1d/DsN=1d,

c1 = iQ1
sN=1d/DsN=1d. s14d

It is constituted of a dark soliton on a cnoidal background
ssolid lined plus a bright solitonsdashed lined. To obtain this
figure, we use the symbolic packageMATHEMATICA , which is
also used to check the correctness of the obtained solution. In
Fig. 1, we can see thatc0 becomes a cnoidal wave when we
move away from the soliton. Appendix B shows that
c0→cs0d=p exphip2s2−k2dxjdnspzd for z→` and c0

FIG. 1. A bright soliton on a dn background. The solid line is for
c0 and the dashed line is forc1 at x=0 with parametersp=1, k
=0.9, r1=1, u1=2.9, andb1=1.87.
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→−p exphip2s2−k2dxjdnspz−2ud for z→−`. This calcula-
tion shows that crests of the cnoidal wave are shifted by
2u/p across the soliton.

Figure 2 shows “a dn-type dark soliton+two bright soli-
tons” from c0,c1,c2 of Eq. s8d which corresponds to aN
=2 MSC on a dn background. To obtain this figure, we need
two real parametersu, i =1,2.They give two sets ofai ,bi ,ci
i =1,2 bysubstitutingu→ui i =1,2, in Eq.s10d. Substituting
these values into the formula of Eqs.s4d and s7d with sN
=2d, we can get MSC’s constituted of “a dark+two bright”
oscillating solitons.

As was discussed in theN=1 case,c0 in Fig. 2 sN=2d
becomes a cnoidal wave whenz→ ±`, though there is a
relative shift of crests. In this case, each soliton in theN=2
MSC contributes 2ui to the shift of crests, such thatc0
→ s−1d2p exphip2s2−k2dxjdnspz−2u1−2u2d for z→−` and
c0→p exphip2s2−k2dxjdnspzd for z→`. Generally the non-
linearly superposed solitons do not interfere with each other
in the regionz→−`, and each contributes independently to
the shift of crests of the cnoidal wavec0 such thatc0
→ s−1dNp exphip2s2−k2dxjdnspz−2oi=1

N uid for z→−`. This
fact will be seen again in following figures. We confirm this
fact explicitly using the symbolic packageMATHEMATICA by
applying it to Eq.s14d.

We can obtain MSC’s lying on a plane-wave background
by taking thek→0 limit of the previous results. In this limit,
cs0d→p exps2ip2xd, q→0, Qsud→1, and

a = exphip2f2 + csc2sud − sec2sudgx/2 + pfcscsudsecsud/2

− tansudgzj,

b = − tansudexphip2f− 2 + csc2sud − sec2sudgx/2

+ pfcscsudsecsud/2 − tansudgzj,

c = r expf− ip2 csc2sudsec2sudx/2 − p cscsudsecsudz/2g,

b = − p cscsudsecsud. s15d

To get a simple type solution, we take

cotu2 = 2 cotu1, r1
2 = − sec2 u1/3, r2

2 = − s3 + sec2 u1d/12.

s16d

Substituting all these results into Eq.s8d, we obtain

c0 = −
1

2
p exps2ip2xdh1 − 3 tanh2fp cotsu1dzgj,

c1 = Î3p cscsu1dexphip2f1 + csc2su1dgxj

3sechfp cotsu1dzgtanhfp cotsu1dzg,

c2 =
Î3

2
p cotsu1dÎ3 + sec2su1d exph2ip2f2 csc2su1d − 1gxj

3sech2sp cotu1 zd. s17d

At this point, we note that cn- and sn-type backgrounds,
which will be dealt with in the following sections, do not
have the plane-wave background limit.

By taking thek→1 limit on theN=1 formula, we can get
a MSC where two solitons interact coherently through thec0
component. In this limit,cs0d→p sechspzdexpsip2xd, q→1,
K→`, K8→p /2. And shere, we expressu1→u,a1→a,r1
→ r for simplicityd

Qsud → 2ÎK/K8 expS−
pK

4K8
Dcoshsud s18d

and

a = expfip2 coth2sudx/2 + p cothsudz/2gcoshspz− udsechspzd,

b = − exphip2fcoth2sud − 2gx/2

+ p cothsudz/2jsinhsudsechspzd,

c = r expf− ip2 coth2sudx/2 − p cothsudz/2g,

b = − p cothsud. s19d

Substituting all these results into Eq.s8d, we obtain

c0 = p expsip2xd

3
r2 − expf2p cothsudzg

expf2p cothsudzgcoshspz− 2ud + r2 coshspzd
,

c1 = 2pr cothu
expfip2 coth2sudx + p cothsudzg

expf2p cothsudzgcoshspz− 2ud + r2 coshspzd
.

s20d

Similarly, taking three parametersui, i =1,3, andusing
Eq. s10d, we can obtain a MSC of “a dark+three bright os-
cillating solitons”; see Fig. 3. The shape ofc3 in Fig. 3 for
z→` becomes a sech type, as will be explained in the fol-
lowing. For parameters of Fig. 3,c3sa3dsb3d term dominates
c1,c2sa1,a2dsb1,b2d terms forz→`. Using this fact and Eqs.
s8d, s10d, ands11d, we can obtain

FIG. 2. Two bright solitons on a dn-type background. The solid
line is for c0, the dashed line is forc1, and the dot-dashed line is for
c2 at x=0 with parametersp=1, k=0.9,u1=2.9,u2=2.8,b1=1.87,
b2=2.14,r1=r2=1.
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c3 → −
2b3a3c3

*

ua3u2 + uk3u2 + uz3u2
= A exps− iudsechswz+ hd

s21d

shere,u=0; uÞ0 is used in the following sectionsd,

A = p
dnsu3d

snsu3dcnsu3dYÎ1 +
sn2su3ddn2spz− u3d

cn2su3d
,

w = pSQ8su3d
Qsu3d

+
cnsu3ddnsu3d

snsu3d D , s22d

exph =
Qspz− u3d
r3Qspzd

sb3 − b1dsb3 − b2d
sb3 + b1dsb3 + b2d

3Î1 +
sn2su3ddn2spz− u3d

cn2su3d
. s23d

The amplitudeA oscillates alongz with periodicity 2K /p,
with a maximum value ofp/snsu3d and a minimum value of

pdnsu3d /snsu3d. We thus defineĀ;f1+dnsu3dg / f2 snsu3dg.
Especially atk→0, Ā→p/sinsu3d. The widthw is a mono-
tonically decreasing function ofu in 0øuø2K, with w=`
at u=0, w=0 at u=K, andw=−` at u=2K. Especially atk

→0, w→p cotu3. In Fig. 4, we can see two plots,Ā vs w for
a givenk fFig. 4sad; the solid line is fork=0.5, and the dotted

line is for k=0.9g and Ā vs k for a givenw fFig. 4sbd; the
solid line is for w=1, and the dotted line is forw=1.3g.
These figures show that the cnoidal waveskÞ0d makes soli-
tons broader in width and smaller in amplitude, compared to

the plane wavesk=0d. These effects are more apparent for
largerk.

IV. MULTISOLITON COMPLEXES ON A cn-TYPE
BACKGROUND

Soliton complexes on a cn-type background can be ob-
tained by choosing a starting solution

cs0d = exphip2s2k2 − 1dxjkpcnspz,kd. s24d

This is another cnoidal solution of the NLSE of the focusing
medium.

A. Type I

The linear Equations3d is integrated with the result

a = exphip2s2k2 − 1dx/2jexpsigx + dpzd
Qcspz− ud

Qcspzd
,

b = − exph− ip2s2k2 − 1dxjk
snsudcnspz− ud

dnsud
a,

c = r expsbz/2 − ib2x/2d. s25d

The Bäcklund parameterb is in this case given by

b = − p
cnsud

snsuddnsud
, s26d

andg, d in Eq. s25d are

FIG. 3. Four-component soliton MSC constructed by adding
three solitons on a dn background.sad Solid line: c0. Dashed line:
c1. sbd Solid line: c2. Dashed line:c3. The parameters arep=1,
k=0.9, ui =3.1,2.9,2.8,bi =1.58,1.87,2.14,r i =0, i =1,3.

FIG. 4. Amplitude of the soliton on a dn background:sad am-
plitude vs widthw; the solid line is fork=0.5, and the dashed line
is for k=0.9 sp=1d. sbd Amplitude vsk; the solid line is forw=1
and the dashed line is forw=1.3.
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g = −
k2p2

2
S cn2sud

dn2sud
−

1

k2sn2sudD ,

d =
Qc8sud
Qcsud

+
1

2

cnsud
snsuddnsud

−
k2snsudcnsud

dnsud
. s27d

Here,

Qcsud = u4S pu

2sK − iK8d
D = 1 + 2o s− 1dnqn2

cosS npu

K − iK8
D ,

s28d

with q=exph−pK8 / sK− iK8dj. A simple way to obtainsor
check the correctness ofd these results is by substitutingk
→1/k, p→kp, u→ku in the results of Sec. III and using
identities of elliptic functions like dnsku,1 /kd=cnsu,kd.

Figure 5 shows “a dark soliton1 three bright solitons”
lying on a cn background, which is obtained using Eq.s8d
with N=3. The obtained solution has constant phases overz
for fixed x values. In Fig. 5, the phase ofc0 fu in Eq. s21dg is
0, while those ofci, i =1,3, are −0.78, −0.83, −0.95, respec-
tively. We thus drawc1 exps0.78id for the dotted line of in
Fig. 5sad, for example.

The shift of crests in this case is similarly calculated as in
Appendix B. It isc0→cs0d=kpexphip2s2k2−1dxjcnspzd for
z→` and c0→ s−1dNkpexphip2s2k2−1dxjcnspz−2oi=1

N uid
for z→−`, such that the shift of crest along thez axis is
2oui /p.

As in the case of dn type, the shape ofc3 in Fig. 5 for
z→` is sech type. It is described by Eq.s21d with sfor
simplicity, we takeu3→ud

A = p
cnsud

snsuddnsudYÎ1 + k2sn2sudcn2spz− ud
dn2sud

,

w = pSRe
Qc8sud
Qcsud

+
cnsuddnsud

snsud
−

pK8

2K

u

K2 + K82D . s29d

In the above expression, the last term ofw originates from
the following quasiperiodicity of the theta function:

UQcspz− u + 2Kd
Qcspz+ 2Kd

U = expS− p
uK8

K2 + K82DUQcspz− ud
Qcspzd

U .

s30d

A has a maximum valuep cnsud / fsnsuddnsudg and a mini-

mum value p cnsud /snsud. We thus defineĀ;p cnsudf1
+dnsudg / f2snsuddnsudg. The amplitudeA oscillates with the

mean valueĀ and periodicity 2K. Especially ask→0, Ā
→p cotu. The widthw is a monotonically decreasing func-
tion of u in 0øuø2K, with w=` at u=0, w=0 atu=K, and

w=−` at u=2K. In Fig. 6, we can see two plots,Ā vs w for
a givenk fFig. 6sad; the solid line is fork=0.5, and the dotted

line is for k=0.9g and Ā vs k for a givenw fFig. 6sbd; the
solid line is for w=1, and the dotted line is forw=1.3g.
Figure 6 shows that the cn cnoidal wave with largek makes
the amplitude of solitons large at a given widthw. A plot of

Ā vs k can be similarly drawn, which shows that the ampli-
tude of a soliton on a cn background increases withk and
drops sharply neark=1.

B. Type II

There is another type of MSC solutions on a cn-type
background, which is obtained from the type-I case by sub-
stituting u→u+ iK8. In this case, the solution of the linear
Equations3d becomes

a = exphip2s2k2 − 1dx/2jexpsigx + dpzd
Qcspz− u − iK8d

Qcspzd
,

b = exph− ip2s2k2 − 1dxj
dnspz− ud

k cnsudsnspz− ud
a,

FIG. 5. Four-component MSC constructed by adding three soli-
tons on a cn backgroundstype Id. sad Solid line: c0. Dashed line:
c1 exps0.78id. sbd Solid line: c2 exps0.83id. Dashed line:
c3 exps0.95id. The parameters arep=1, k=0.9, u=2.8,2.9,3.1,b
=0.49,0.58,0.74,r i =1, i =1,3.

FIG. 6. Amplitude of the soliton on a cn background, amplitude
vs width w; the solid line is fork=0.5, and the dashed line is for
k=0.9 sp=1d.
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c = r expsbz/2 − ib2x/2d. s31d

The Bäcklund parameterb is

b = − p
dnsudsnsud

cnsud
, s32d

andg, d in Eq. s31d are

g = −
p2

2
Sdn2sud

cn2sud
− k2 sn2sudD ,

d =
Qc8su + iK8d
Qcsu + iK8d

+
1

2

snsuddnsud
cnsud

−
dnsud

snsudcnsud
. s33d

Figure 7 shows “a dark soliton + three bright solitons”
lying on a cn background, which is obtained using Eq.s8d
with N=3. The obtained solutions have constant phasesfu in
Eq. s21dg overz for a fixedx value. In Fig. 7, the phase ofc0
is 0, while those ofci, i =1,3, are2.63, 2.84, −0.20, respec-
tively. We thus drawc1 exps−2.63id, c2 exps−2.84id, and
c3 exps0.20id in Fig. 7.

The shift of crests in the type-II case is calculated from
c0→cs0d=kpexphip2s2k2−1dxjcnspzd for z→` and c0

→kpexphip2s2k2−1dxjcnspz−2oi=1
N uid for z→−`, such that

the shift is 2oui /p.
The shape ofc3 in Fig. 7 is a sech type, described by Eq.

s21d with swe takeu3→ud

A = p
snsuddnsud

cnsud YÎ1 +
dn2spz− ud

k2cn2sudsn2spz− ud
,

w = pSRe
Qc8su + iK8d
Qcsu + iK8d

−
cnsuddnsud

snsud
−

pK8

2K

u + K

K2 + K82D .

s34d

Contrary to the previous cases, the amplitudeA becomes
zero whenpz−u=2nK. The extremum value ofA is ±kp snu
whenpz−u=s2n+1dK. It gives the shape ofc3 in Fig. 7sbd,
which oscillates around zero value asz→`. The widthuwu is
an periodic function inu with a periodicityK, with maxi-
mum values atu=s2n+1dK /2, n=integer. In Fig. 8, we can
see a plot ofw vs u for a givenk ssolid line, k=0.5; dotted
line, k=0.9d. It shows that the width parameterw cannot be
arbitrarily largescontrary to the cases of dn and cn type Id,
and the width of solitons in the type-II case has a minimum
which depends on the modulusk.

V. MULTISOLITON COMPLEXES ON A sn-TYPE
BACKGROUND

The cnoidal wave solution of the NLSE of the defocusing
mediumss=−1d is given by

cs0d = exph− ip2s1 + k2dxjikpsnspz+ K,kd. s35d

The linear equations3d is integrated with the result

a = exph− ip2s1 + k2dx/2jexpsigx

+ dpzd
Qsspz+ K − u − iK8d

Qsspzd
,

b = i exphip2s1 + k2dxj
dnsud

k snspz− udcnsud
a,

c = r expsbz/2 − ib2x/2d. s36d

The Bäcklund parameterb is given by

b = sk2 − 1dp
snsud

dnsudcnsud
, s37d

andg, d in Eq. s36d are

FIG. 7. Four-component soliton complexes constructed by add-
ing three solitons on a cn backgroundstype IId. sad Solid line: c0.
Dashed line:c1 exps−2.63id. sbd Solid line:c2 exps−2.84id. Dashed
line: c3 exps0.20id. The parameters arep=1, k=0.9, u
=3.1,2.9,2.8,b=1.35,1.73,2.02,r i =1, i =1,3.

FIG. 8. Widthw vs u for the soliton on a cn backgroundstype
II d; the solid line is fork=0.5 and the dashed line is fork=0.9, p
=1.

MULTISOLITON COMPLEXES MOVING ON A CNOIDAL… PHYSICAL REVIEW E 71, 036628s2005d

036628-7



g =
sk2 − 1dp2

2
S 1

cn2sud
+ k2 sn2sud

dn2sudD ,

d =
Qs8su − K + iK8d
Qssu − K + iK8d

+ s1 − k2d
snsud

2 dnsudcnsud
−

dnsud
snsudcnsud

.

s38d

Here,

Qssud = u4S ipu

2K8
D = 1 + 2o s− 1dnqn2

cosS inpu

K8
D ,

s39d

with q=−exps−pK /K8d. A simple way to obtainsor check
the correctness ofd these results is by substitutingk→ ik8 /k,
p→ ikp, and u→ iku in the results of Sec. IIIsMSC on a
dn-type backgroundd and using identities of elliptic functions
like dnsip , ikd=snsÎ1+k2p+Ks1/Î1+k2d ,1 /Î1+k2d.

Figure 9 shows “a dark soliton1 three bright solitons,”
which is obtained using Eq.s8d with N=3.

The shift of crests in this case is similarly calculated as
in Appendix B, which is c0→cs0d= ikp exph−ip2s1
+k2dxjsnspz+Kd for z→−` and c0→ ikp exph−ip2s1
+k2dxjsnspz+K−2oi=1

N uid for z→`.
The overall characteristics of solitons in this case are

similar to the case of cn type II and are different from cases
of dn and cn type I. The shape ofc3 in Fig. 9 is sech type,
described by Eq.s21d with

A = k82p
snsud

dnsudcnsudYÎ− 1 +
dn2sud

k2 cn2sudsn2spz− ud
,

w = pSRe
Qs8su − K + iK8d
Qssu − K + iK8d

−
cnsud

snsuddnsud
+

p

2

K − u

KK8
D .

s40d

As in the case of cn type II, the widthuwu is a periodic
function in u with a periodicityK, with maximum values at
u=s2n+1dK /2, n=integer. The maximum value ofuAu is
pkk8snsud /dnsud. In Fig. 10, we can see a plot,w vs u for a
given k ssolid line,k=0.5; dotted line,k=0.9d. It shows that
the width parameterw cannot be arbitrarily largescontrary to
the dn and cn type Id, and a soliton in this case cannot be
narrower than a given value.

VI. DISCUSSION

In this paper, we study the characteristics of MSC’s lying
on a cnoidal wave. It is connected with researches on the
behaviors of solitons in periodic structures, which are in-
tensely studied nowadaysf35g. The analytic solutions of
MSC’s with cnoidal-wave backgrounds are obtained using
the DT method. These solutions contain two important lim-
its: s1d dn-type cnoidal waves become plane waves in thek
→0 limit, and s2d they become solitons in thek→1 limit.
Thus our solutions can be used to study the effect of cnoidal
waves on MSC’s in comparison to that of plane waves and/or
coherent solitons. These solutions give important character-
istics like amplitudesA and widthsw of MSC’s. A peculiar
phenomenon of MSC solutions was the shift of crests of
cnoidal waves.

The cnoidal waves used as starting solutions of the DT in
the present paper are not the most general possible form of
periodic solutions. In fact, there appear more complex peri-
odic solutions expressed in terms of Weierstrass functions
f36,37g. MSC’s lying on these types of solutions would be
interesting, because they can give more freedom in the con-
trol of MSC’s.

The stability analysis of these solutions remains for future
study. In fact, there already have appeared some numerical

FIG. 9. Four-component MSC constructed by adding three soli-
tons on a sn background.sad Solid line: −ic0. Dashed line:c1. sbd
Solid line: c2. Dashed line:c3. The parameters arep=1, k=0.9,
u=−2.8,−2.9,−3.1,b=−1.64,−1.29,−0.84,ri =1, i =1,3.

FIG. 10. Width parameterw of the soliton on a sn background:
w vs u; the solid line is fork=0.5 and the dashed line is fork
=0.9 sp=1d.
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studies on this subjectsN=1 cased f38,39g. There it was
shown that the “a soliton+cnoidal wave” system is unstable
or weakly stable for the focusing case, while it is stable for
the defocusing case.
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APPENDIX A: PROOF OF SYM’s SOLUTION

In this appendix, we show thata,b in Eq. s10d indeed
satisfy the linear equations3d. Consider the following equa-
tion, which is the first]z part of Eq.s3d:

]za − cs0db + ba/2 = 0. sA1d

By insertinga,b of Eq. s10d andb of Eq. s11d into Eq. sA1d
and dividing it bypa, we get

Q8sud
Qsud

+
Q8spz− ud
Qspz− ud

−
Q8spzd
Qspzd

−
snsuddnsud

cnsud

+
snsuddnspzddnspz− ud

cnsud
= 0. sA2d

Now, using the identitiesf32,40g

E
0

u

dn2svddv =
Q8sud
Qsud

+
E

K
u, sA3d

the first three terms in Eq.sA2d become

E
0

pz−u

fdn2svd − dn2sv + udgdv. sA4d

Finally, using the identitysit is a result of the addition theo-
rem of Jacobi’s elliptic functionsd

dn2sa − bd − dn2sad = −
snsbd
cnsbd

d

da
fdnsaddnsa − bdg,

sA5d

Eq. sA4d becomes

snsud
cnsud

fdnsud − dnspz− uddnspzdg. sA6d

Collecting all these results, it is now easy to see that Eq.
sA2d becomes zero. The other remaining]z parts of the linear
equations3d are similarly proved.

The first]x part of Eq.s3d is

]xa − i ucs0du2a − i]zc
s0db + ibcs0db − ib2a/2 = 0. sA7d

By insertinga,b of Eq. s10d andb of Eq. s11d into Eq. sA7d
and dividing it byip2a, we get

1 −
1

2
k2 −

dn2sud
2 cn2sud

+
1

2 sn2u
− dn2spzd

− k2snsud
cnsud

snspzdcnspzddnspz− ud

+
dnsud
cn2sud

dnspzddnspz− ud −
dn2sud

2cn2 sudsn2sud

= sk2 − 1d
sn2sud
cn2sud

− dn2spzd +
dnspz− ud

cn2u
fdnspzddnsud

− k2 cnsudsnsudcnspzdsnspzdg. sA8d

Using the identities of elliptic functions including the addi-
tion theorem, the last two terms of Eq.sA8d become

− dn2spzd +
1

cn2sud
fdn2sud − k2 cn2sudsn2spzdg

= − 1 +
dn2sud
cn2sud

. sA9d

It is now easy to see that Eq.sA8d becomes zero, which
proves Eq.sA7d. The other]x parts of the linear equations3d
are similarly proved.

APPENDIX B: ASYMPTOTIC FORM OF c0

For the parameters of Fig. 1,dp=0.60, b1/2=0.94 and
Eq. s10d shows ucu@ uau , ubu for z→`. Then, D=LP1<ucu2
and Q0/D<2ibab* / ucu2→0 such that c0→cs0d=
p exphip2s2−k2dxjdnspzd. On the other hand,ucu! uau , ubu for
z→−` such thatD=LP1<ua1u2+ ub1u2 and

iQ0/D < − 2bSb

a
+

a*

b* D−1

= − 2p exphip2s2 − k2dxj
dnsuddnspz− ud

cn2sud + sn2suddn2spz− ud
.

sB1d

Then,

csz→ − `d = p exphip2s2 − k2dxjSdnspzd − 2
dnsuddnspz− ud

cn2sud + sn2suddn2spz− udD
= p exphip2s2 − k2dxjFdnspz− uddnsud − k2snspz− udsnsudcnspz− udcnsud

1 − k2sn2spz− udsn2sud
− 2

dnsuddnspz− ud
1 − k2sn2spz− udsn2sudG

= − p exphip2s2 − k2dxjdnspz− 2ud. sB2d

In the last part of the above derivation, we use the addition theorem of elliptic functions.
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