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Multisoliton complexes moving on a cnoidal wave background
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We obtain solutions of coupled nonlinear Schrédinger equations which describe multisoliton complexes
moving on a cnoidal-wave background. Our method is based on the Darboux transformation, which uses Sym’s
solution of the associated linear equation. Solutions are presented in a matrix determinant form, matrix ele-
ments of which are expressed in terms of Jacobi’s elliptic functions. Some characteristics of multisoliton
complexes like widths and amplitudes are explicitly calculated.
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I. INTRODUCTION Especially, the MSC solutions on a backgrouyid,1§
, . , ... provide answers on how MSC's interact with plane waves
Recently ther,e has arisen much interest in multisolitory /6y the change of characteristics of MSC's by an addition
complexes(MSC's) [1,2], which appear in various physical t hjane waves. These solutions can be useful, for example,
problems. These include solitons in multicore fiber dewcesm the theory of dark incoherent solitons. At this point, we
[3], multicomponent Bose-Einstein condensates in a trappefse that the plane-wave solution of the NLSE's is a special
ultracold gag4], gap solitong5], and incoherent solitons in it of more general solutions having nonzero asymptote,
photorefractive materialg2,6]. An MSC is a self-localized ' he 5o-calledcnoidal-wavesolutions of integrable theories.

state, which is a nonlinear superposition of several singlerhen it would be very interesting to know the characteristics
solitons of the system having the same speed and thus movgs \isc's lying on a cnoidal wave of pulsating amplitude,

as a single complex. Generally, MSC's are described bynseag of a plane wave of constant amplitude. A related
coupled nonlinear Schrodinger equatidht-SE's). A num- oy hariment is the appearance of a cnoidal-wave train in the

ber of publications dealt with the explicit construction of \;5.well-Bloch equatior[21]. More close experimental de-
MSC's of coupled NLSE's. They include soliton solutions \,ejonment is the formation of solitons in nonlinear periodic
[7,8] and periodic solutiong9-11] of the two-component g ctures. known as gap solitof22].

case and solutions of equations having components 1arger |, tact there have been various special periodic solutions
than 2[9,12,3. _ . of multicomponent NLSE’s(a cnoidal wave is a specific
In some special cases, like the wave propagations in @544 \which were obtained by various direct methods using

homogeneous medium having a Kerr-type nonlinear rey,q appropriate ansaf®,23). For example, the Hirota bilin-
sponse, the corresponding NLSE's reduce to the integrablg,: method was used to find periodic solutions of coupled

equation NLSE's[24,25. In Ref.[2], Porubov and Parker employ the
N following ansatz:
¢9Xlﬂk=i(9§lﬂk+ 2I0’E |(ﬂi|2lﬂk, k=0,Nando= %1. lﬂoz\*"sz'i'AgJ'i'Béo(z’x), ¢l:Vpr2+ Dp+Eé¢(Z’X),
i=0
2
(1) 2

.~ wherep=p(x—-cz,0,,93) is the Weierstrass function. But all
%omponents of these solutiofisoth ||, |¢4|) are periodic
over the entirex axis and are not forms of the MSC{a
soliton for ¢4 in this casé plus a periodic wavéi,). These
pes of solutions are not suitable to the study of the effects
f periodic waves applied to an MSC.
In this paper, we will calculate MSC solutions on a

method to construct solitor{4.3]. But the high-level math-
ematical technicality of the method makes it difficult for
finding more complex solutions, multisolitons and/or solitons
having nonvanishing backgrounds. Thus, most solutions o
MSC'’s have been constructed in a form of stationary solu-

tions or using the linear superposition princifitk4]. The cnoidal-wave background using a method based on the Dar-

stationary MSC reduces the problem of the coupled NLSE's,  ,, transformationiDT), instead of using some special an-
to a set of ordinary differential equations. Some important. ;> The DT gives a way to obtain a new solution of “a

results obtained in these ways are solitary-wave solution§ : : C e -
) . X oliton+starting solution” type when it is applied once on a
[15], MSC solutions of partially coherent sol.|tons 6], given starting solutiori26—-28. In fact, this method is ap-
'\"595 on a backgrountﬂl_?,lSI, and |\/JSCS in a sea O_f plied to the vector NLSEcorresponding to thBl=1 case of
radiation m_ode$19]. Collisions _of MSC'’s are also investi- the present papgto study a soliton coupled to a cnoidal-
gated and illustrated by numerical exampl26]. wave background29,30. To create an MSC on a starting
solution /% of the cnoidal wavgwe are restricted by the
fact that a starting solution hasyg component only in Eq.
*Electronic address: hjshin@khu.ac.kr (1)], we apply anN iteration of the DT ony/?. This proce-
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dure is described if81], which shows that the final result of =c; for N values of3=g;, j=1N. Here we takeg;=real |
“MSC +starting solution” can be given in a closed determi-=1N to get stationary MSC's.
nant form. Finally, the Darboux transformation gives a MSC solution
Section Il explains the DT method for constructing thein terms ofa;, bj,c;,j=1,N by the following matrix determi-
MSC on a background, expressed in a closed determinam@ant form. See more details[ial]. We first define two quan-
form. Section Ill showsN=1,2,3MSC'’s on a dn-type cnoi- tities D and Q from which the MC solutions can be con-
dal wave in a focusing mediufr=1). Some characteristics structed. LetD for N=1,2, 3 bedefined as
of MSC'’s like the width and amplitude variation along with
the modulus parametés of dn wave backgrounds are dis- DNV = p,,
cussed. The shift of crests of the dn wave is also calculated.
MSC'’s lying on the plane wavécorresponding to th&=0
limit) and a soliton(k=1 limit) of the dn cnoidal wave are
described. Section 1V discusses MSC's of cn background in a
focusing medium{o=1). It shows that there are two possible
type of MSC'’s on a cn-type background. Section V discusses
MSC’s of sn background in a defocusing medito=-1). (= BY)?Py (= B)M, (= B)°Ps
Section VI contains discussions. The derivation of Sym'sD™N=¥=L| - gM; -B,P, —fBsM;
solution is shown in Appendix A and the calculation of the p M P
shifts of crests is given in Appendix B. All the results and ! 2 3
figures of the paper are checked and prepared using the sym- 5 oo o
bolic packagevATHEMATICA . +oR(B1 - B3) (B2~ B3)

~BM1 - P,
P M

D=2 = L‘

2

a; @
K

P
;3 +oR(B5- )

K2 3

II. MULTISOLITON COMPLEXES IN A MATRIX .
DETERMINANT FORM X (83— B

ap az 2
K2

P
El +oR(B1 - B)(B5- 55

K3 1
Recently, a simple but powerful MSC finding method was

developed inN31]. The method, which is based on the Dar-

boux transformation, uses Crum’s formula and avoids the

stationary ansatf26-28. More explicit closed expressions

of the MSC’s having complex behavior were found usingW

this method. This method is suited well to the construction of 5

N-vector MSC’s on an arbitrary nonvanishing background, L=iNND2TT of TT (8- BNNB + B)°

especially on the cnoidal-wave background. Here, we briefly i=LN  J=IN, j>i

explain the method of finding MSC solutions using the Dar-

boux transformation. A more detailed exposition can be

found in[31]. We first write down the associated linear equa- R=_4L 11 Bi 5)

tion (Lax pain of the coupled NLSE1) in a form needed in I (B - /3')’

the present paper: j<iie o H

da-oyb+pal2=0, ab+ya-pbl2=0, and P;=|aj*+alxi[*+0|g% Mi=|al*+olx|*-olG, o
:ai/Ii, Ki:billi, é’i:Ci/mi,

M,
B’

a; a3 (4)

K1 K3

here

da—iolylla-ic(ah)b+icByb-ip*a2=0,

|. = A ), = = Bi. (6
ab+iolyPo-i(a4)a-iBy a+ipbi2=0, | j:l,l;[j#('g'w‘) " ;:ﬂ;;a'ﬁ Al ©

d,c—pBcl2=0, ac+ip%cl2=0, (3)  Here|---|> means the squared absolute of a determinant.

whereg is an arbitrary parameter argb,c are solutions of Another quantityQ is defined by the form

the linear equations corresponding to the paramgtefhe
signatureo is either 1 or —1 depending on whether the group
velocity dispersion is abnormétr=1) or normal(oc=-1) or
the waveguide is self-focusingr=1) or self-defocusing o
=-1). Then the DT procedure to obtain MSC solutions is E)sz):—ZiO'L‘
given in the following steps.

First, choose a particular solution fgr=?, which de-

E)N:l) =2ic L:Blalb*lv |Q(1N:1)| =2io Lﬂlalcl,

Braiby  Brazh;
Py WP

scribe a cnoidal-wave background. The cnoidal-wave back- 5 * *

_  15181C; & oB2a5C o
ground ¢© will be given in terms of Jacobi's elliptic func- Q™2 = - 2igL \1P121Cr A 2P | iRL| - 72
tions like dn, sn, and cn. 1 2 K1 K2

Next, we integrate the linear equatid®) for the given

: ) 5|,1C*1 5i,ZC;
backgroundy? to obtain N solutionsa=a;, b=b;, andc X

* 1 |:112!

*
K1 K3
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ﬁlalb*l ﬂzazb; ﬁaasb;
Q¥ =2igL|-BiM; - BP, — B3Ms
Py M, P3
Biay Biay Phaz||Biki By Biky
+2iR s ap a3 a;_ 0(; a; y

* * *
Kq Ko K3 Kq Ko K3

6,18181C; G 2285C; G 3B3a3C3

QM =2ioL| -pMy -BP, - BMy
Py M, P3
vig BB B =) | @
' (Bt BB K1 K2
811 8.2
. .| Ps
Ky K3
vin B B)BS=BY) |z as
' (Bt BB Kz K3
% ‘ 5i,2*C*2 5|,3*C*3 )
K2 K3
+iRI-('B§_'B§)('B§_'B§) @ ag
" (Bt BB K1 K3

2 2 2
Biar Bray Bias

8.4C1 8.C ,
x| R ML+ 2RE| oy ag
K1 K3
K1 K2 K3
81C1 82C; 63C3
x| a; a, az |, i=1,2,3. (7)
KK Ky

Using these quantities, we can obtain MSC solutions using

Qo e

=40 4= = jo— i =
Yo= +|0D, i IUD' i=1,N. (8)

Ill. MULTISOLITON COMPLEXES ON A dn-TYPE
BACKGROUND
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FIG. 1. Abright soliton on a dn background. The solid line is for
o and the dashed line is fap; at x=0 with parameterp=1, k
:0.9, r]_:l, U1:2.9, andﬁ1:1.87.

The detailed proof of Sym’s solution is given in Appendix A.
Explicitly, it is
O(pz-u)

a=expip?(2 - kK®)x/2}expi yx + 6p2) o2

sn(u)dn(pz—u)

b=-exg-ip%2 -k?)x} g

c=rexpBz2 -iBXx/2), (10)

whereu,r are arbitrary constants. The Backlund paramgter
is related to the real parameteras

_ dn(u)
B="P i uenw)’ (11)

and vy, in Eq. (10) are related tai as
p2<dn2(u) 1 )
Y=—\ 2 5" )

2 \cri(u)  srf(u)
_ ®'(u) +} dn(u) _ sr’(u)dn(u)’ (12
O(u)  2snu)cn(u) cn(u)

where the Jacobi theta function is defined by the complete
elliptic integral of the first(second kind K (E) as

Ou) = 94(2—:) =1+23 (-1"q” co{%) (13

Soliton complexes on a dn-type background can be obWith g=exp(-7K’/K) andK’=K(k'=1-k?).

tained by choosing a starting solution
% = explip?(2 - k)x}p dn(pzk), 9

where dn=dfpz,k), cn, and sn are the standard Jacobi ellip-
tic functions with the modulug& and p is an arbitrary con-
stant. In the following, we employ the terminology and no-

Figure 1 shows the simpledi=1 case of an MSC on a
dn-type background at=0, which was drawn using

Yo = exfdip?(2 —-k?)x]p dn(pzk) + ngN=1)/D<N=1),

Yr =iQVIDNY. (14)

tation of Ref.[32] as far as elliptic functions are involved. It is constituted of a dark soliton on a cnoidal background
This is the well-known cnoidal solution of the nonlinear (solid line) plus a bright solitor(dashed ling To obtain this

Schrédinger equation in a focusing mediga=1). The lin-
ear equatior(3) is with a dn-type backgroung=¢© in Eq.
(9) was first integrated by Sym in a different contdgie-
scription of vortex motion in hydrodynamic$33]. It was
then applied to an NLSE-related problem in R¢821,29,3Q.

figure, we use the symbolic packagaTHEMATICA , which is

also used to check the correctness of the obtained solution. In
Fig. 1, we can see that, becomes a cnoidal wave when we
move away from the soliton. Appendix B shows that
o— PO=pexplipd(2-kd)xidn(pz) for z—x and iy
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1 cotu,=2cotu;, ri=-seéu,/3, ri=-(3+seéu,)/12.
0.75
16
0.5 (16)
0.25 Substituting all these results into E@), we obtain
> 0 1
-0.25 o= 5P exp(2ipx){1 - 3 tanK[p cot(u,)z]},
-0.5
-0.75 = -
-40 ¢1.=\3p csquyexplip’[1 + csé(uyIx}
FIG. 2. Two bright solitons on a dn-type background. The solid xsectip cotfuy)z]tantip cot{uy)z],
line is for iy, the dashed line is fap,, and the dot-dashed line is for _
i, atx=0 with parameterp=1, k=0.9,u;=2.9,u,=2.8, 8;=1.87, V3 —_— _
Br=2.14,1,=1,=1. 2=~ P cotluy) V3 + sec(uy) exp2ipf2 esc(uy) - 11
x sech(p cotu, 2). (17)

— —p explip?(2-k?)x}dn(pz-2u) for z— —=. This calcula-
tion shows that crests of the cnoidal wave are shifted byat this point, we note that cn- and sn-type backgrounds

2u/p across the soliton. _ _ ~ which will be dealt with in the following sections, do not
Figure 2 shows “a dn-type dark soliton+two bright soli- haye the plane-wave background limit.
tons” from ¢y, 1, ¥, of Eq. (8) which corresponds to & By taking thek— 1 limit on theN=1 formula, we can get

=2 MSC on a dn background. To obtain this figure, we neecy MSC where two solitons interact coherently throughdthe
two real parameters,i=1,2.They give two sets o, b;,¢; component. In this limity® — p sectip2expip?), q— 1,
i=1,2 bysubstitutingu—u; i=1,2, in Eq.(10). Substituting k. K’ 7/2. And (here, we express, —u,a,—a,r,
these values into the formula of Eqel) and (7) with (N for simplicity)

=2), we can get MSC's constituted of “a dark+two bright”
oscillating solitons.

As was discussed in the=1 case,jy in Fig. 2 (N=2)
becomes a cnoidal wave whem— +o, though there is a
relative shift of crests. In this case, each soliton inkwe2  and
MSC contributes @ to the shift of crests, such th )
. (-1)%p explip?(2 —Ikz)x}dn(pz— 2U,-2uy) for z——o ;ﬁ& a=exgdip? coth?(u)x/2 + p coth(u)z/2]coshpz- u)sectip2),
o— p explip?(2-k?)x}dn(pz) for z— . Generally the non-
linearly superposed solitons do not interfere with each other b = - exgip? cothP(u) — 2]x/2
in the regionz— -, and each contributes independently to -
the shift of crests of the cnoidal wave, such that + p coth(u)z/2}sinfu)sectip2),

— (-D)Np explip?(2-k?)xtdn(pz—- 22N u) for z— —o. This

— K
O(u) — 2VK/K' exr(— %)cost{u) (18

fact will be seen again in following figures. We confirm this c=r exf—ip? cottf(u)x/2 - p cothu)z/2],
fact explicitly using the symbolic packag@THEMATICA by
applying it to Eq.(14). B=-pcothu). (19

We can obtain MSC’s lying on a plane-wave background o . .
by taking thek— O limit of the previous results. In this limit, Substituting all these results into E@), we obtain
9 — p exp(2ip?), q— 0, O(u)— 1, and _
Yo =P explipx)

a=expipq2 + csé(u) - sed(u)]x/2 + p[csdu)secu)/2 « r” - exg 2p coth(u)z]
— tar(u)]Z} exf 2p coth(u)z]coshpz- 2u) + r? cost{p2)’
exfip? coti?(u)x + p coth(u)z]
b= - tan(u)exp{ip? - 2 + csé(u) - sed(u)]x/2 Y =2pr COthuexp{Zp coth(u)z]costpz— 2u) + 12 cosHp2)
+ plcsdu)sedu)/2 — tar(u) ]z}, (20)

Similarly, taking three parameters, i=1,3, andusing

c=r exg-ip? cs@(u)sed(u)x/2 - p csdu)sedu)z/2], Eq. (10), we can obtain a MSC of “a dark+three bright os-
cillating solitons”; see Fig. 3. The shape #f in Fig. 3 for

z— o becomes a sech type, as will be explained in the fol-

B=—pcsqu)sedu). (15  lowing. For parameters of Fig. 8g(as)(bs) term dominates
C1,C(ag,a5)(by,b,) terms forz— . Using this fact and Egs.
To get a simple type solution, we take (8), (10), and(11), we can obtain

036628-4
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1 A
0.75
0.5 1.3
0.25
1.2
> 0 \
-0.25 \ 1.1 /
0.5 o1 ~0.5 0.5/ T "
-0.75 \ 0%
(@) -40 < 0.8 s
1 ~
(a)
A
1.6t T —=
g
1.4 N
1.2 |
(b) -40 -20 0 20 40
FIG. 3. Four-component soliton MSC constructed by adding 0.2 0.4 0.6 0.8 k
three solitons on a dn backgrourd Solid line: 4. Dashed line: j[
1. (b) Solid line: . Dashed line:;. The parameters anp=1, (0)

k=0.9,u,=3.1,2.9,2.85,=1.58,1.87,2.14;;=0,i=1,3.
FIG. 4. Amplitude of the soliton on a dn backgrourid} am-

2B:a c, plitude vs widthw; the solid line is fork=0.5, and the dashed line
Y3 — - — 3 32 3 5 = Aexp(—if)sectiwz+ 7) is for k=0.9 (p=1). (b) Amplitude vsk; the solid line is forw=1
|ag|© + [ x3|° + [ 23] and the dashed line is fav=1.3.
(21)

the plane wavdk=0). These effects are more apparent for
largerk.

_dn(ug) \/ sr(uz)dr’(pz— us) IV. MULTISOLITON COMPLEXES ON A cn-TYPE
sn(u3)cn(u3) cré(ug) ' BACKGROUND

(here,#=0; 0+ 0 is used in the following sectiojs

Soliton complexes on a cn-type background can be ob-

_ p<®'(U3) N cn(u3)dn(u3)> (22) tained by choosing a starting solution
O(us) sn(uy) 49 = expip?(2k? - 1)x}kpcn(pz k). (24)
ex = O(pz-Us) (Bs— B (Bs - Bo) ;fgziljsrﬁnother cnoidal solution of the NLSE of the focusing
r30(p2 (B3+B)(Bs+ L)
AT |
SrP(Uy) dré(pz-— Uy) ype
Xq/1+ cr(u) : (23 The linear Equatior{3) is integrated with the result
3
. . . PR . 2 2 . c(pz_ U)
The amplitudeA oscillates alongz with periodicity K/p, a=expip“(2k - )x/2lexpiyx + Sp2—————,
with a maximum value of/sn(u;) and a minimum value of (P2
pdn(uz)/sn(us). Weihus defineA=[1+dn(uz)]/[2 sn(ug)]. snu)en(pz—u)
Especially atk— 0, A— p/sin(us). The widthw is a mono- b= - exp{-ip*(2k*- 1)X}kdn—(u)a:
tonically decreasing function af in O<u<2K, with w=«
atu=0, w=0 atu=K, andw=- at u=2K. Especially at C=r exp B2 ~iF3/2). (25

—0,w—pcotus. In Fig. 4, we can see two plots,vsw for

a givenk [Fig. 4(a); the solid line is fokk=0.5, and the dotted The Bécklund parameteg is in this case given by

line is for k=0.9] and A vs k for a givenw [Fig. 4(b); the cn(u)

solid line is forw=1, and the dotted line is fow=1.3]. ﬁ:—p—d, (26)
These figures show that the cnoidal wdke 0) makes soli- sru)dn(u)

tons broader in width and smaller in amplitude, compared t@and v, & in Eq. (25) are

036628-5
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.15
0.5
0.25

-0.25
-0.5
-0.75

-40

(a) -20 20 40

0.2
0.15
0.1

> 0.05
0
-0.05
-0.1

(b)—0.15_40

-20 0 20 40

FIG. 5. Four-component MSC constructed by adding three soli-

tons on a cn backgroundype I). (a) Solid line: 4. Dashed line:
Y exp0.78). (b) Solid line: ¢, exp0.83). Dashed line:
i3 exp(0.95). The parameters ane=1, k=0.9,u=2.8,2.9,3.1,8

=0.49,0.58,0.74;=1,i=1,3.
_ @(@ 1 )
YT drw) ks )
_ 04w 1 cn(u)  K*snu)en(u)
2= ouw T 2snwdnw) ~ dnw) 27
Here,
U oo nmu
Ou) = 04<m) =1+22 (-1)q CO<K_ iK’)’
(28)

with q=exp-#K’/(K-iK’)}. A simple way to obtain(or
check the correctness)othese results is by substitutirig
—1/k, p—kp, u—ku in the results of Sec. Il and using
identities of elliptic functions like dgku, 1/k)=cn(u, k).

Figure 5 shows “a dark solitor three bright solitons”
lying on a cn background, which is obtained using ER).
with N=3. The obtained solution has constant phases nver
for fixed x values. In Fig. 5, the phase ¢f [6in Eq.(21)] is
0, while those ofys, i=1,3, are 9.78, —0.83, —0.95, respec-
tively. We thus drawy, exp(0.78) for the dotted line of in
Fig. 5(a), for example.
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A

1 =

~
0.5 ~
w

-1 -0.5 Vi 0.5 1

7~ =-0.5
‘el

= -1

FIG. 6. Amplitude of the soliton on a cn background, amplitude
vs width w; the solid line is fork=0.5, and the dashed line is for

k=0.9 (p=1).
~on(u) \/  STWer?(pz-u) rP(u)cré(pz—u)
sr(u)dn(u) dre(u) )
_ O/(u) cnudnu) 7K' u
"= p(Re O4(u) " sn(u) 2K K2+ K,z)- (29

In the above expression, the last termvoforiginates from
the following quasiperiodicity of the theta function:

‘@C(pz—u+2K) :exp(— “ )
K
(30)

O(pz+ 2K)
A has a maximum valu@ cn(u)/[sn(u)dn(u)] and a mini-
mum value p cn(u)/sn(u). We thus defineA=p cn(u)[1
+dn(u)]/[23r(u)dn(u)] The amplitudeA oscillates with the

mean valueA and periodicity K. Especially ask—0, A
— p cotu. The widthw is a monotonically decreasing func-
tion of uin Osu<2K, with w=c atu=0,w=0 atu=K, and
w=- atu=2K. In Fig. 6, we can see two ploté, vs w for
a givenk [Fig. 6(a); the solid line is fork=0.5, and the dotted

line is for k=0.9] and A vs k for a givenw [Fig. 6b); the
solid line is for w=1, and the dotted line is fow=1.3].
Figure 6 shows that the cn cnoidal wave with lakgmakes
the amplitude of solitons large at a given width A plot of

A vs k can be similarly drawn, which shows that the ampli-
tude of a soliton on a cn background increases Witnd
drops sharply neak=1.

uk’
2+K/2

®c(pz_ U)
0.(p2)

B. Type Il

There is another type of MSC solutions on a cn-type
background, which is obtained from the type-l case by sub-

The shift of crests in this case is S|m|IarIy calculated as instituting u—u+iK’. In this case, the solution of the linear

Appendix B. It is yp— 9 =kp exp{ip?(2k?- 1)x}cn(p2) for
z—» and — (-1)Nkpexplip?(2k?- 1)x}en(pz- 2N ,u;)
for z——o0, such that the shift of crest along tlzeaxis is
23u;/p.

As in the case of dn type, the shapefin Fig. 5 for
z—x is sech type. It is described by E¢1) with (for
simplicity, we takeuz— u)

Equation(3) becomes

O pz-u-iK’)

a=explip(2k? - 1)x/2}expi yx + 6p2) 02

’

dn(pz-u)

— _in2 2 _ -
b=expl~ip(2k ken(u)snpz—u) >

1)x}
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-20 0

20

40

FIG. 7. Four-component soliton complexes constructed by add-

ing three solitons on a cn backgrouftgipe 11). (a) Solid line: .

Dashed linei; exp(—2.63). (b) Solid line: » exp(—-2.84). Dashed
line: ¢3exp0.20). The parameters arep=1, k=0.9, u

=3.1,2.9,2.88=1.35,1.73,2.02;=1,i=1,3.
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/ N
\ 0.2
/ 0.1 \ /
AN N\
NG R
/ -0.1 \
\—0/.2 /
-0.3 \

FIG. 8. Widthw vs u for the soliton on a cn backgrouritype
II); the solid line is fork=0.5 and the dashed line is f&=0.9, p

=1.
~ sr(u)dn(u) \/ dré(pz- u)
T en(u) kzcnz(u)snz(pz— u)’
i (R O (u+iK’) _enwdn(u) 7K' u+K )
WEP R w+ik) T snu) | 2K KZ+K2)

(34)

Contrary to the previous cases, the amplitudldoecomes
zero whenpz—u=2nK. The extremum value ok is +kp sru
whenpz-u=(2n+1)K. It gives the shape af; in Fig. 7(b),
which oscillates around zero value &s> . The width|w] is

c=rexp B2 -ipX2). (31)  an periodic function inu with a periodicity K, with maxi-
mum values ati=(2n+1)K/2, n=integer. In Fig. 8, we can
- . see a plot ofv vs u for a givenk (solid line, k=0.5; dotted
The Bécklund parametes is line, k=0.9. It shows that the width parameter cannot be
arbitrarily large(contrary to the cases of dn and cn type |
dn(u)sn(u) and the width of solitons in the type-Il case has a minimum
B=—-p—— . (32)  which depends on the moduls
cn(u)
V. MULTISOLITON COMPLEXES ON A sn-TYPE
andy, §in Eq. (31) are BACKGROUND
The cnoidal wave solution of the NLSE of the defocusing
medium(o=-1) is given b
__p_2<dn2(U) _k2 Snz(U) (U ) g y
7772\ erd(u) ! O = exp~ip%(1 +K*)x}ikpsn(pz+K,k).  (35)
The linear equatiori3) is integrated with the result
— in2 2 H
O/ (u+iK’) }sr{u)dn(u) ) dn(u) @3 a=exp—ip%(1 +k9)x/2}expliyx
T OJu+iK’) 2 cn(u) snu)cn(u) . 6pz)®s(pZ+K—u—iK’)
Figure 7 shows “a dark soliton + three bright solitons” 04p2)
lying on a cn background, which is obtained using E).
with N=3. The obtained solutions have constant phagés b=i explip(1 + k)x} dn(u) a
Eqg.(21)] overzfor a fixedx value. In Fig. 7, the phase @f, ksn(pz-u)cn(u)
is 0, while those of;, i1=1,3, are2.63, 2.84, —-0.20, respec-
tively. We thus drawy, exp(-2.63), ¢, exp(—2.84), and c=rexpfz2 -ifx/2). (36)
3 €xp(0.20) in Fig. 7.
The shift of crests in the type-Il case is calculated from 1€ Bécklund parametes is given by
o— PO =kpexplipA(2k?-1)xicn(pz) for z—o and iy sn(u)
—kpexplip?(2k2-1)xten(pz- 25N ,u;) for z— -, such that B= (K~ 1)pm, (37)

{ae) shifh iGNZ takeu; — U)

The shape ofl; in Fig. 7 is a sech type, described by Eq.

andy, §in Eq. (36) are

036628-7
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FIG. 9. Four-component MSC constructed by adding three soli-

tons on a sn backgroun¢g) Solid line: - y. Dashed line;. (b)
Solid line: . Dashed line:;. The parameters arp=1, k=0.9,

u=-2.8,-2.9,-3.18=-1.64,-1.29,-0.84p;=1,i=1,3.
_(k2—1)p2< 1 .\ zsnz(u)>
2 cré(u) drAu)/’
_g(u—K+iK’)+(1_k2) sn(u) _dn(u)
T O(u-K+iK") 2 dn(u)en(u)  sn(u)en(u)’
(38)
Here,
®s<u>:o4(2 ) 1+23 (- 1" s(”:(—”“)
(39

with g=—exp—7K/K’). A simple way to obtain(or check
the correctness pthese results is by substituting- ik’ /K,
p—ikp, and u—iku in the results of Sec. IIMSC on a
dn-type backgroundand using identities of elliptic functions
like dn(ip,ik)=sn(V1+k2p+K(1/\V1+k?), 1/\1+K?).

Figure 9 shows “a dark solitor three bright solitons,”
which is obtained using Eq8) with N=3.
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-0.2 \

-0.3

FIG. 10. Width parametew of the soliton on a sn background:
w vs u; the solid line is fork=0.5 and the dashed line is fér

=0.9(p=1).
A=Kp _snu) \/ dré(u)
dn(u)cn(u) Tl cré(u)srt(pz—u)’
~ (R OUu-K+iK')  cn(u) +7_TK—U)
WP e (u-K+iK) ~ snudn(u) 2 KK’ )’

(40)

As in the case of cn type Il, the widtljw| is a periodic
function inu with a periodicityK, with maximum values at
u=(2n+1)K/2, n=integer. The maximum value dA| is
pkk'sn(u)/dn(u). In Fig. 10, we can see a plot vs u for a
givenk (solid line,k=0.5; dotted linek=0.9). It shows that
the width parametew cannot be arbitrarily largécontrary to
the dn and cn type)) and a soliton in this case cannot be
narrower than a given value.

VI. DISCUSSION

In this paper, we study the characteristics of MSC'’s lying
on a cnoidal wave. It is connected with researches on the
behaviors of solitons in periodic structures, which are in-
tensely studied nowaday{85]. The analytic solutions of
MSC'’s with cnoidal-wave backgrounds are obtained using
the DT method. These solutions contain two important lim-
its: (1) dn-type cnoidal waves become plane waves inkhe
—0 limit, and (2) they become solitons in thie— 1 limit.
Thus our solutions can be used to study the effect of cnoidal
waves on MSC's in comparison to that of plane waves and/or
coherent solitons. These solutions give important character-
istics like amplitudesA and widthsw of MSC’s. A peculiar
phenomenon of MSC solutions was the shift of crests of
cnoidal waves.

The cnoidal waves used as starting solutions of the DT in

The shift of crests in this case is similarly calculated asthe present paper are not the most general possible form of

in Appendix B, which is yy— ¢@=ikpexp{— |p
+k?)xisn(pz+K) for z—-= and y— ikp exp{-ip%(
+k?)xtsn(pz+K-23, b)) for z—oe.

periodic solutions. In fact, there appear more complex peri-
odic solutions expressed in terms of Weierstrass functions
[36,37. MSC's lying on these types of solutions would be

The overall characterlstlcs of solitons in this case ardanteresting, because they can give more freedom in the con-
similar to the case of cn type Il and are different from casegrol of MSC's.

of dn and cn type |. The shape @£ in Fig. 9 is sech type,
described by Eq(21) with

The stability analysis of these solutions remains for future
study. In fact, there already have appeared some numerical

036628-8
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studies on this subjecN=1 casé [38,39. There it was

shown that the “a soliton+cnoidal wave” system is unstable
or weakly stable for the focusing case, while it is stable for

the defocusing case.

ACKNOWLEDGMENT

This work was supported by Korea Research Foundation 1 _ =

Grant No. KRF-2003-070-C00011.
APPENDIX A: PROOF OF SYM’s SOLUTION

In this appendix, we show that,b in Eq. (10) indeed
satisfy the linear equatio(8). Consider the following equa-
tion, which is the firsts, part of Eq.(3):

d,a— i/ Ob+ Bal2 =0. (A1)

By insertinga,b of Eq. (10) and B of Eq. (11) into Eq. (A1)
and dividing it bypa, we get

®'(u) . ®'(pz-u) ~ ®'(p2 ~ sn(uydn(u)
Ou) O(pz-u) O(p2 cn(u)
. sn(u)dn(pz2)dn(pz-u) 0. (A2)
cn(u)
Now, using the identitie§32,4Q
u B @’(U) E
fo crt(oyd =@ 8+ L (A3)
the first three terms in EqA2) become
pz-u
f [dré(v) — drf(v + u)]dv. (A4)
0

Finally, using the identityit is a result of the addition theo-
rem of Jacobi’s elliptic functions
snb) d

- ———/[dn(a)dn(a-b)],

dré(a-b) - dri(a) = onb) da

(A5)
Eq. (A4) becomes

sn()

[dn(u) dn(pz-u)dn(p2)]. (A6)

Collecting all these results, it is now easy to see that Eq.

(A2) becomes zero. The other remainifygarts of the linear
equation(3) are similarly proved.

PHYSICAL REVIEW E 71, 036628(2005

The firstd, part of Eq.(3) is
da—ilyQPa-io b +iByOb-ipai2=0. (A7)
By insertinga,b of Eq. (10) and 8 of Eq. (11) into Eq. (A7)

and dividing it byip?a, we get
1k2_ dré(u) .\ 1
2 2crf(u) 2srfu
sn(u)

k2

cn(u)

LC)
" e

- dré(p2)

sn(pzcn(pz)dn(pz- u)

dré(u)
2cr? (u)snz(u)

n(P

——dn(p2dn(pz—u) -
sr(u)

cré(u)
-K? cn(u)sr(u)cn(pz)sr(pz)]. (A8)

Using the identities of elliptic functions including the addi-
tion theorem, the last two terms of EGA8) become

- dré(p )+d

=(k*-1) [dn(pz)dn(u)

- dré(p2) + ——[dré(u) — k? crd(u)sri(p2)]

n2( )
dnz(u)
cnz(u) '

It is now easy to see that EA8) becomes zero, which
proves Eq(A7). The others, parts of the linear equatiot3)
are similarly proved.

(A9)

APPENDIX B: ASYMPTOTIC FORM OF ¢y

For the parameters of Fig. ¥p=0.60, 5;/2=0.94 and
Eqg. (10) shows|c|>|al,|b| for z— <. Then, D=LP;~|c[?
and Qy/D=2iBab’/[c|>—~0 such that y— 9=
p explip?(2-k?)x}dn(pz). On the other handg|<|al,|b| for
z— - such thatD=LP; ~|a,|?>+|b,|? and

£\ -1
—

dn(u)dn(pz-u)
cr?(u) + sri(u)dré(pz-u)

= - 2p explip?(2 - k?)x}

z— =) =pexplip’(2 - kz)x}(dn(pz) -

= pexplip?(2 - k) }{

(B1)
Then,
|
) dn(u)dn(pz-u) )
cré(u) + sri(u)dré(pz- u)
dn(pz- u)dn(u) — k?sn(pz— u)snu)cn(pz— u)cn(u )_ dn(u)dn(pz-u)
1 - K?srf(pz— u)sri(u) 1 - K?srt(pz— u)srf(u)

(B2)

= - pexplip?(2 - k?)xtdn(pz- 2u).

In the last part of the above derivation, we use the addition theorem of elliptic functions.
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